Addressing Prosociality in Lower Elementary Classes in China Through Humane Education

William Ellery Samuels, Ph.D.
The City University of New York
College of Staten Island
el.samuels@csi.cuny.edu
Background

- Prosocial behaviors
 - “[A]ny act that assists, benefits, or provides support for another”\(^1\)

- Prosocial behaviors in children predict:
 - internalizing & externalizing problem behaviors\(^2\)
 - future aggression\(^3\)
 - social functioning\(^4,5\)
 - academic achievement\(^6\)
Development of Prosociality

• Shows strong\(^1\) but non-linear growth\(^7,8\) throughout childhood.

• Largely develops through social interactions\(^9\)
 - Well-guided interactions with others can nurture prosocial behaviors\(^9\)
 - Those who affect a child’s prosocial development becomes increasingly wider and more diverse throughout childhood\(^10\)
 - Heterogeneous social systems may promote prosociality\(^11\)
Development of Prosociality

• Shows strong1 but non-linear growth7,8 throughout childhood.

• Largely develops through social interactions9
 ◦ Well-guided interactions with others can nurture prosocial behaviors9
 ◦ Those who affect a child’s prosocial development becomes increasingly wider and more diverse throughout childhood10
 ◦ Heterogeneous social systems may promote prosociality11

• Therefore, practice expanding those to whom a child expresses prosociality may encourage its development
Animals as Prosocial Targets

- Children naturally attend to animals12,13,14
- Many animals elicit empathic responses in children
 - That are as strong or stronger than that elicited by other people15
- Indeed, interactions with animals can increase the frequency of prosociality in children & adolescents16
Animals as Prosocial Agents

• Indeed, interactions with animals can increase the frequency of prosociality in children & adolescents

• Small but growing body of research on animal- & nature-based education programs:
 ◦ ↑ expressed empathy for peers17
 ◦ ↑ frequency of prosocial behaviors18,19
Justification for Current Study

• Prosocial development & expression may differ between cultures
 ◦ E.g., individualistic & communal societies20,21

• No known research on animal-based education programs & prosociality conducted in the Far East
Justification for Current Study

- Prosocial development & expression may differ between cultures
 - E.g., individualistic & communal societies20,21
- No known research on animal-based education programs & prosociality conducted in the Far East
- Therefore, the ability of programs to promote prosocial development may differ among countries that emphasize collectivist norms
Methods: Program

- Caring for Life Education Program
 - Created by ACTAsia (actasia.org)
 - Employs student-centered activities
 - Draws on students’ personal experiences
 - Promotes care for animals, people, and the environment
 - Seeks to develop students’ empathic self-efficacy
Methods: Outcome Measure

- Teacher Observation of Classroom Adaptation–Checklist (TOCA-C)
 - Teachers report on their students
 - Measures frequency of various prosocial behaviors during previous 3 weeks
 - E.g., “is friendly,” “is liked by classmates,” and “shows empathy & compassion for others’ feelings”
- Well validated across several populations of children22
Methods: Participants

- Partnered with 25 schools in 5 cities across China
- Whole schools randomly assigned (within constraints) to experimental or control group
- All first- and/or second-grade classes in each invited to participate
- 2,255 students & 159 teachers in total
Methods: Procedure

- Teachers rated randomly-chosen subset of 15 students in their class
 - Used TOCA-C prosociality subscale
 - Exactly 1 week before & 1 week after the Caring for Life Program was conducted at experimental-group schools

- Conducted over 3 consecutive academic years
 - Only experimental-group participants in first year
<table>
<thead>
<tr>
<th>Grade</th>
<th>Group</th>
<th>City</th>
<th>Year 1</th>
<th></th>
<th></th>
<th>Year 2</th>
<th></th>
<th></th>
<th>Year 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N Schools</td>
<td>(\bar{X}) Classes per School</td>
<td>N Students</td>
<td>N Schools</td>
<td>(\bar{X}) Classes per School</td>
<td>N Students</td>
<td>N Schools</td>
<td>(\bar{X}) Classes per School</td>
<td>N Students</td>
</tr>
<tr>
<td>1</td>
<td>Cntl</td>
<td>A</td>
<td>1</td>
<td>2.0</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>2</td>
<td>6.0</td>
<td>382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>3</td>
<td>1.7</td>
<td>122</td>
<td>1</td>
<td>4.0</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>A</td>
<td>7</td>
<td>2.3</td>
<td>367</td>
<td>6</td>
<td>2.8</td>
<td>524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>4</td>
<td>4.0</td>
<td>473</td>
<td>3</td>
<td>3.3</td>
<td>306</td>
<td>2</td>
<td>3.5</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>1</td>
<td>4.0</td>
<td>117</td>
<td>2</td>
<td>3.5</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>1</td>
<td>1.0</td>
<td>20</td>
<td>1</td>
<td>3.0</td>
<td>90</td>
<td>1</td>
<td>4.0</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>Cntl</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2.0</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1.0</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2.7</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3.2</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>5</td>
<td>3.6</td>
<td>330</td>
<td>3</td>
<td>2.0</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyses

• Used multilevel models of change
 ◦ With full maximum likelihood estimation
 ◦ Accounts well for nested nature of data & variable sample sizes23

• Looked separately at first & second graders
Results: First Graders
Results: Second Graders

[Graph showing mean prosociality scores for different groups across pretest and posttest.]
Conclusions

- Participating in an animal- and nature-focused program improved general, human-directed prosocial behavior
 - In several schools across China
 - While accounting well for possible confounds (e.g., year, city, school)

- The program had a rather strong effect
 - Relative to similar programs conducted in Western countries
 - Especially among second grade students
 - Especially among those who began the study with relatively lower initial levels of prosociality.
Limitations

- Did not investigate *why* the Caring for Life Program is effective
- Teachers who conducted the program also evaluated the students.
- Students in the controls group participated in no additional programming.
- All students lived in cities
References

NEERO 2018